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Abstract

We investigate a version of the Abelian Higgs model with a non-standard
kinetic term (K-field theory) in (2+1) dimensions. The existence of vortex-type
solutions with compact support (topological compactons) is established by a
combination of analytical and numerical methods. This result demonstrates
that the concept of compact solitons in K-field theories can be extended to
higher dimensions.

PACS numbers: 11.27.+d, 11.10.Lm

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Theories with functions of gradients other than quadratic have already been studied for a long
time, starting with the well-known Born–Infeld theory many decades ago. Higher powers of
the derivatives may be introduced in order to avoid the Derrick scaling argument, opening the
possibility of static finite-energy solutions (solitons), as is the case, e.g., in the Skyrme model
and its generalizations [1–6]. These theories found some applications in strong interaction
physics. Another field of applications of theories with higher kinetic terms (K-field theories)
is cosmology, where the proposal goes under the name of K essence [7–10]. There, the K
fields may influence in a nontrivial way both the global expansion of the universe and the
propagation of small perturbations relevant for the matter distribution. There exists even a
recent proposal combining both Skyrme and K essence concepts [11].

One interesting contribution was the observation [12] that a field theory with a nonstandard
kinetic term (K-field theory) can produce defects with compact support, or compactons,
in theories with typical regular potentials. Compactons have been originally found and
investigated in nonrelativistic nonlinear field theories generalizing the well-known KdV
equation, see, e.g., [13, 14]. The case of relativistic field theories, with potentials with a
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non-continuous first derivative, but with a standard kinetic term, has been analyzed, e.g., in
[15–18]. Compactons in K-field theories, restricted to one dimension and scalar fields, lead to
a rather natural application in brane cosmology, see [19–22], to which we also refer to for a
more detailed introduction and reference list. The extension to higher dimensions and gauge
fields is therefore of interest.

Let us describe now in more detail the theory which we want to study. We shall be
concerned with a specific class of topological defects which may form in theories with a non-
standard kinetic term (K-field theories), namely topological defects with a compact support
(compactons). Compactons have mainly been investigated in the form of compact topological
solitons in (1+1) -dimensional field theories (or, equivalently as compact domain walls with
dimension (d − 1) in (d+1) -dimensional field theories that is, with co-dimension 1 in d space
dimensions). Compact solitons in (1+1) -dimensional field theories may form for different
reasons. One possibility is a potential for the field which has a non-continuous first derivative at
(some of) its vacuum values, a so-called V-shaped (or W-shaped) potential. Another possibility
consists of a non-standard kinetic term (the K term) with a certain behavior at low energies
(absence of the normal, quadratic kinetic term in the limit of low energy). In this latter case,
the potential term should still possess more than one vacuum (in order to allow for topological
solitons), but may be of the standard U shape otherwise. It is the purpose of the present paper
to generalize the investigation of compact topological defects for K-field theories to higher
dimensions or, equivalently, to compact topological defects with a co-dimension greater
than 1.

As for conventional solitons, also in the case of compact K-field solitons there are some
significant differences between solitons in one space dimension on the one hand, and solitons
in more than one space dimension, on the other hand. So let us first briefly describe some
results of compact K-field solitons in (1+1) spacetime dimensions. Concretely, in [12] a
Lagrangian density

L = M̃2|ξμξμ|ξμξμ − 3λ2(ξ 2 − a2)2 (1)

was introduced, where ξ is a real scalar field, and ξμ ≡ ∂μξ , etc. Here the potential term is
just the standard quartic potential with the two vacuum values ξ = ±a, whereas the kinetic
term is nontrivial (quartic in this specific example). Further, a Minkowski metric is assumed,
that is, ξμξμ = ξ 2

t − ξ 2
x , etc. The static field equation resulting from the above Lagrangian is

ξ 2
x ξxx − λ2

M̃2
(ξ 2 − a2)ξ = 0. (2)

A compacton is defined by the condition that the field ξ approaches its vacuum value ξ = ±a

for finite x. The above static field equation is fulfilled provided that the spatial gradient term ξ 2
x

is zero, as well, which is true for a constant ξ = ±a. At this point the difference with compact
topological solitons in higher dimensions is quite obvious. In fact, for higher-dimensional
topological compact solitons the vacuum manifold of the potential will no longer be a discrete
set of vacuum values. Instead, it will be a circle (for vortex-type compactons), a 2-sphere
(for monopole-type compactons), etc. Correspondingly, the compacton field will no longer
be a single scalar field, but rather a complex scalar, a three-component field taking values
in the adjoint of SU(2), etc. Further, a topologically nontrivial compacton is defined by the
condition that the compacton field approaches the vacuum manifold at a finite radius such that
it takes values in the full vacuum manifold (that is, covers the full circle, 2-sphere, etc). But
this behavior is not compatible with a vanishing spatial gradient term (∇ξ)2 = 0, because
the angular parts of the gradient are necessarily nonzero. This whole reasoning is, in fact,
quite similar to the argument which demonstrates the non-existence of topological solitons
in higher-dimensional scalar field theories, and also the way out is the same. It consists in
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the introduction of gauge fields, such that the ordinary gradient is replaced by a covariant
gradient, and the gauge field may exactly compensate for the nonzero angular gradient (that is,
the scalar field taking values in the vacuum manifold is, in fact, a pure gauge configuration).

We shall focus on the case of a complex scalar field coupled to an Abelian gauge field
in (2+1) spacetime dimensions, which will give rise to compactons of the vortex type. The
general discussion above applies equally well to a scalar field in the adjoint representation of
SU(2), coupled to a non-Abelian SU(2) gauge field, where compactons of the monopole type
should exist. It turns out, however, that the case of monopole-type compactons is technically
and calculationally much more involved, and not all results which are found in the vortex
compacton case can be achieved for the monopole compacton. Therefore, we restrict to the
vortex case in this paper.

It is a generic feature of compacton field configurations that they are continuous with
a continuous first derivative at the compacton boundary, whereas the second derivative is
discontinuous. Further, the gauge field enters into the covariant derivative in an analogous
fashion as the derivative operator; therefore one could expect that the gauge field might behave
like the first derivative of the compacton field at the compacton boundary, that is, continuous
with a noncontinuous first derivative. This is indeed what happens if the kinetic term for
the gauge field is of the standard Maxwell form. This implies that the gauge field is only a
weak solution to its field equation (that is, it does not solve the field equation at the compacton
boundary). Further, the contribution of the Maxwell term to the energy density is discontinuous
at the compacton boundary. The energy density has, however, no singularities and the resulting
total energy is finite, rendering these solutions acceptable from the point of view of a finite
energy condition. Whether these weak solutions are acceptable physically depends on the
physical system or physical problem under investigation. There exists the possibility of
having gauge fields with a continuous first derivative and a discontinuous second derivative,
like the compacton field itself. This requires, however, the introduction of a non-standard
kinetic term for the gauge field, as well (instead of the standard Maxwell term). Solutions of
this second type are standard (i.e., they are not weak but, instead, hold in all space), because
the discontinuity of the second derivatives at the compacton boundary is always suppressed
by a multiplying factor zero, due to the non-standard kinetic terms (both for the scalar field
and the gauge field).

In section 2 we investigate the case of a standard kinetic term for the gauge field. We
choose the usual rotationally symmetric ansatz for the scalar and gauge fields and study the
resulting system of ODEs both analytically and numerically. In section 3 we perform the same
analysis for the case of a non-standard kinetic term for the gauge field. Section 4 contains our
conclusions.

2. Compact vortices for the standard gauge field kinetic term

We study the following action

S =
∫

d3x

[
K(X) − V (φ) − 1

4
FμνF

μν

]
, (3)

where φ is a complex scalar field and the potential

V (φ) = λ

4
(|φ|2 − v2)2 (4)

is the usual Mexican hat potential which takes its minimum value V = 0 at |φ| = v. Further,

Fμν ≡ ∂μAν − ∂νAμ (5)

3
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is the field strength tensor of the Abelian gauge potential Aμ,X is the modulus squared of the
covariant derivative

X ≡ (Dμφ)(Dμφ)∗, Dμ ≡ ∂μ − ieAμ (6)

and K is a (at the moment arbitrary) function of its argument (the non-standard kinetic term).
The kinetic term for the gauge field, on the other hand, is given by the standard Maxwell term
in this section. Here we assume that any dimensionful constants have been absorbed by a
rescaling of the coordinates and fields, such that x, φ and Aμ are dimensionless. Consequently,
λ, v and e are dimensionless constants. Further, our signature for the Minkowski metric in
(1+2) dimensions is (+,−,−). We remark that models of this type, allowing for gauge K
vortices, have been studied recently in [23], although not for compacton-type solutions.

The Euler–Lagrange equations resulting from this action are

KXDμDμφ + KXXX,μDμφ + Vφ∗ = 0 (7)

∂μFμν = ejν (8)

(here KX ≡ dK
dX

etc), where the (conserved) current jμ is

jμ = − iKX[φ∗Dμφ − φ(Dμφ)∗]. (9)

As we want to study static vortex solutions, we choose the ansatz for the simplest vortex with
winding number 1,

φ(x) = eiϕf (r) (10)

Aj(x) = −1

e

α(r)

r2
εjkx

k (11)

as well as A0 = 0, where j, k = 1, 2, r and ϕ are polar coordinates

x1 = r cos ϕ, x2 = r sin ϕ (12)

and f (r) and α(r) are at the moment arbitrary functions of their argument. With this ansatz,
for X we obtain

X = −
(

f ′2 +
(1 − α)2

r2
f 2

)
, (13)

where the prime denotes derivative w.r.t. r. Then, the resulting equations for f and α are

−KX

(
f ′′ +

1

r
f ′ − (1 − α)2

r2
f

)
− KXXX′f ′ +

λ

2
(f 2 − v2)f = 0, (14)

(
α′

r

)′
+ 2

e2

r
f 2(1 − α)KX = 0. (15)

Next, we want to make a specific choice for the nonstandard kinetic term K. Concretely, we
choose

K = 1
2 |X|X (16)

which for static configurations is equal to

K = − 1
2X2. (17)

Remark. As far as static configurations are concerned, we could choose the kinetic term
K = − 1

2X2 from the very beginning. However, for time-dependent configurations this kinetic
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term in general does not lead to an energy bounded from below, whereas the expression
K = 1

2 |X|X does lead to a bounded energy.
With this choice for the kinetic term we obtain the field equations(

f ′2 +
(1 − α)2

r2
f 2

)(
f ′′ +

1

r
f ′ − (1 − α)2

r2
f

)
+

(
f ′2 +

(1 − α)2

r2
f 2

)′
f ′

− λ

2
(f 2 − v2)f = 0 (18)

and (
α′

r

)′
+ 2

e2

r
f 2(1 − α)

(
f ′2 +

(1 − α)2

r2
f 2

)
= 0. (19)

We observe that for our specific choice for the kinetic term, the constant v may be brought to
the value of v = 1 by a dimensionless rescaling of f (that is, of φ). Indeed, as both the kinetic
term and the potential are quartic in φ, the field equation for φ (or f ) is of the third power
and, therefore, homogeneous. In the Maxwell equation, on the other hand, the rescaling of φ

results in a rescaling of the current jμ which is, again, homogeneous in φ. This rescaling may
be compensated by a redefinition of the (dimensionless) electric charge e. Therefore, we may
set v = 1 in the above system of equations without loss of generality, which we assume in the
following.

2.1. Expansion about the center

We now want to insert a power series expansion about the center r = 0 into the above
equations. It is easy to find that only odd powers contribute to f , whereas only even powers
contribute to α,

f (r) =
∞∑

n=1

A2n−1r
2n−1 (20)

α(r) =
∞∑

n=1

a2nr
2n. (21)

Here a2 and A1 are free parameters, whereas the higher coefficients are determined in terms
of a2, A1, λ and e. Introducing the notation

a ≡ a2, A ≡ A1 (22)

we obtain concretely for the first few coefficients

a4 = −1

2
e2A4 (23)

a6 = 1

64
e2λA2 +

1

3
e2A4a (24)

A3 = − 1

64

λ

A
(25)

A5 = − 1

49 152

1

A3
[1024A4(e2A4 − a2) + 192λA2a − 256λA4 + 15λ2] (26)

and one finds that due to the nonlinearity of the system the higher coefficients are quite
complicated.
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2.2. Expansion about the boundary

Now we assume that there exists a compacton boundary, that is, a value r = R such that the
field f approaches its vacuum value, and that the first derivative is zero,

f (r = R) = 1, f ′(r = R) = 0. (27)

Further, we assume that α takes its vacuum value at the same point r = R, α(r = R) = 1. We
will see in a moment that we cannot assume α′(r = R) = 0 if we want to obtain nontrivial
results.

We remark that the local analysis of this subsection cannot be used to determine the value
of R where the fields approach their vacuum values. This value can be determined either by
a complete analytic solution of the system (which is out of reach in the present case), or by a
numerical integration, starting with the conditions determined by the local analysis (the power
series expansions) at one boundary (e.g., r = 0), and using a shooting algorithm to reach the
other boundary (e.g., r = R), with the boundary conditions again given by the local analysis.
This numerical integration shall be performed in the next subsection.

It is useful to introduce the new variable

ε = R − r (28)

and to subtract the vacuum values of the fields, that is

f (r) ≡ 1 − g(ε), α(r) ≡ 1 − β(ε). (29)

With this change we obtain the following system of equations(
g′2 +

β2

(R − ε)2
(1 − g)2

) (
−g′′ +

g′

R − ε
+

β2

(R − ε)2
(1 − g)

)

−
(

g′2 +
β2

(R − ε)2
(1 − g)2

)′
g′ +

1

2
λg(1 − g)(2 − g) = 0 (30)

and

−β ′′ − β ′

R − ε
+ 2e2(1 − g)2β

(
g′2 +

β2

(R − ε)2
(1 − g)2

)
= 0, (31)

where now the prime denotes derivative w.r.t. ε. Now we insert the power series expansion

g(ε) =
∞∑

n=2

Bnε
n (32)

β(ε) =
∞∑

n=1

bnε
n (33)

into the above equations. There is only one free parameter, namely b1, because we have fixed
the three conditions

g(ε = 0) = 0 g′(ε = 0) = 0, β(ε = 0) = 0. (34)

Introducing the notation

b ≡ b1, (35)

we find for the coefficient B2 a cubic equation with the three solutions

B2 = 0, ± 1

12R

√
6λR2 − 36b2. (36)

This implies that we may indeed join the vacuum solution B2 = 0 with the compacton solution
(the positive root in the above solution) at the compacton boundary ε = 0. For the compacton

6
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we choose

B2 = +
1

12R

√
6λR2 − 36b2 (37)

which implies the inequality

6b2 � λR2. (38)

The other coefficients for the compacton are determined uniquely by linear equations and the
first few are given by

B3 = 1

36R2

λR2 − 24b2

5λR2 − 24b2

√
6λR2 − 36b2 (39)

b2 = − b

2R
, b3 = 0, b4 = 0 (40)

b5 = e2

60
λb, b6 = − e2λb

360R

11λR2 − 72b2

5λR2 − 24b2
. (41)

We do not display higher coefficients, because already the expression for the coefficient B4 is
a rather complicated three-line expression. It is obvious from the above expressions that the
linear coefficient b ≡ b1 of the gauge field must be nonzero, because for b = 0 all the higher
bi are zero, as well, leading to a gauge field which is pure gauge in the whole space R

2\{0},
which cannot provide a finite energy solution, as discussed already in section 1.

2.3. Numerical evaluation

There are two possibilities for a numerical integration of our system. We may either use
the original system of equations (18) and (19) (with v = 1) and start the integration at the
center r = 0 with the initial conditions deteremined in subsection 2.1 (power series expansion
at the center). Then we require that there exists a radius r = R such that at this point the
numerical solution obeys the boundary conditions determined in subsection 2.2 (expansion at
the boundary). This procedure we call shooting from the center. In this case we have three
free parameters at our disposal, namely a,A and R. At the same time, we have to fulfil three
conditions at the boundary, namely f (R) = 1, f ′(R) = 0 and α(R) = 1. Therefore, we
expect a solution to exist in the generic case, that is, for arbitrary values of the two coupling
constants of the theory (the electric charge e and the strength of the Higgs potential λ).

The same conclusion can be reached by analyzing the shooting from the boundary, instead.
In this case, we use the system of equations (30) and (31) for the numerical integration. Further,
we have two free parameters in this case, namely b (that is, α′(R)) and R. At the same time, we
have two conditions to obey at the center, namely f (r = 0) = 0 and α(r = 0) = 0. Therefore,
the number of adjustable free parameters again matches the number of conditions, and we
expect that a solution will exist generically. We remark that the condition α′(r = 0) = 0 does
not count as an additional boundary condition, because it is a consequence of the symmetries
of the equations of motion (that is, α(r) has a power series expansion about r = 0 in terms of
r2 rather than r).

Concretely, we use the shooting from the boundary for the numerical integration, because
it is numerically simpler (there are only two free adjustable parameters and two boundary
conditions). In figures 1–4 we show the result of the numerical integration for some selected
values of the coupling constants e and λ. We see that the behavior determined from the power
series expansions in sections 2.1 and 2.2 is exactly reproduced by the numerical solutions.

7
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Figure 1. Standard Maxwell kinetic term, and shooting from the boundary: for e = 0.1 and
λ = 0.1, the functions f (r) and f ′(r) are shown in the upper diagram, whereas the functions α(r)

and α′(r) are shown in the lower diagram. f and f ′ start at f (R) = 1 and f ′(R) = 0 at the
boundary, and are supposed to hit f (r = 0) = 0 and an undetermined value of f ′(r = 0) at the
center. α starts at α(R) = 1, whereas the starting value of α′(R) ≡ b is an adjustable parameter. α

and α′ are supposed to hit the values α(r = 0) = 0 and α′(r = 0) = 0 at the center. The adjustable
parameters in this case take the values b = 0.399 135 and R = 5.001 365.

3. Compact vortices for the non-standard gauge field kinetic term

Now we study the action

S =
∫

d3x[K(X) − V (φ) − Fn], (42)

where

F ≡ 1
4FμνF

μν (43)

and n is an integer whose value will be determined in a moment. So in this section the kinetic
term of the gauge field is non-standard, as well. The remaining terms are as in section 2. The
Euler–Lagrange equation for the scalar field φ is identical to that in section 2, whereas for the
gauge field it is

∂μ(nFn−1Fμν) = ejν (44)

8



J. Phys. A: Math. Theor. 42 (2009) 135401 C Adam et al

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Figure 2. Standard Maxwell kinetic term, and shooting from the boundary: for e = 0.1 and
λ = 1.0, the functions f (r) and f ′(r) are shown in the upper diagram, whereas the functions α(r)

and α′(r) are shown in the lower diagram. f and f ′ start at f (R) = 1 and f ′(R) = 0 at the
boundary, and are supposed to hit f (r = 0) = 0 and an undetermined value of f ′(r = 0) at the
center. α starts at α(R) = 1, whereas the starting value of α′(R) ≡ b is an adjustable parameter. α

and α′ are supposed to hit the values α(r = 0) = 0 and α′(r = 0) = 0 at the center. The adjustable
parameters in this case take the values b = 0.709 773 and R = 2.812 476.

and the current is again

jν = −KX[φ∗Dνφ − φ(Dνφ)∗]. (45)

Using again the radially symmetric ansatz (10) and (11), we obtain

F = 1

2

(
α′

r

)2

(46)

and, for equation (44) we find

(2n − 1)n

2n−1

(
α′

r

)2n−2 (
α′

r

)′
+ 2e2nKX

f 2

r
(1 − α) = 0. (47)

9
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Figure 3. Standard Maxwell kinetic term, and shooting from the boundary: for e = 1.0 and
λ = 0.1, the functions f (r) and f ′(r) are shown in the upper diagram, whereas the functions α(r)

and α′(r) are shown in the lower diagram. f and f ′ start at f (R) = 1 and f ′(R) = 0 at the
boundary, and are supposed to hit f (r = 0) = 0 and an undetermined value of f ′(r = 0) at the
center. α starts at α(R) = 1, whereas the starting value of α′(R) ≡ b is an adjustable parameter. α

and α′ are supposed to hit the values α(r = 0) = 0 and α′(r = 0) = 0 at the center. The adjustable
parameters in this case take the values b = 0.350 292 and R = 4.840 96.

For the specific choice K = − 1
2X2 for static configurations, we obtain

(2n − 1)n

2n−1

(
α′

r

)2n−2 (
α′

r

)′
+ 2e2n

(
f ′2 +

(1 − α)2

r2
f 2

)
f 2

r
(1 − α) = 0. (48)

3.1. Expansion at the boundary

We first perform the expansion at the boundary, because this will serve to determine the value
n of the integer power of the gauge field kinetic term. We, again, introduce the variable
ε ≡ R − r and the functions g(ε) and β(ε), like in (28) and (29). Then the resulting field
equations in the variable ε are (30) for the scalar field and

Pn + Qn = 0 (49)

10
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Figure 4. Standard Maxwell kinetic term, and shooting from the boundary: for e = 1.0 and
λ = 1.0, the functions f (r) and f ′(r) are shown in the upper diagram, whereas the functions α(r)

and α′(r) are shown in the lower diagram. f and f ′ start at f (R) = 1 and f ′(R) = 0 at the
boundary, and are supposed to hit f (r = 0) = 0 and an undetermined value of f ′(r = 0) at the
center. α starts at α(R) = 1, whereas the starting value of α′(R) ≡ b is an adjustable parameter. α

and α′ are supposed to hit the values α(r = 0) = 0 and α′(r = 0) = 0 at the center. The adjustable
parameters in this case take the values b = 0.622 917 and R = 2.722 27.

for the gauge field, where

Pn ≡ (2n − 1)n

2n−1

(
β ′

R − ε

)2n−2 (
− β ′′

R − ε
− β ′

(R − ε)2

)
(50)

and

Qn ≡ 2e2n (1 − g)2

R − ε

(
g′2 +

β2(1 − g)2

(R − ε)2

)
β. (51)

Next, we introduce the expansions about the boundary

g(ε) =
∑
k=2

B̃kε
k (52)

11
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and

β(ε) =
∑
k=2

b̃kε
k, (53)

where we assume that both g and β start with the quadratic term, that is, a quadratic approach
to the vacuum value. Inserting now these expansions into equation (49), we find in leading
order

Pn = −(2n − 1)n2n

(
b̃2

R

)2n−1

ε2n−2 + O(ε2n−1) (54)

Qn = e2n 8b̃2B̃
2
2

R
ε4 + O(ε5) (55)

and, therefore, a necessary condition for the cancellation of the leading order is 2n − 2 = 4 or

n = 3 (56)

which we assume in the following. Cancellation of the leading order now leads to the condition

b̃2
(
e6R4B̃2

2 − 15b̃4
2

) = 0 (57)

with the five solutions

b̃2 = 0,±e
3
2 R

(
B̃2

2

15

) 1
4

,± ie
3
2 R

(
B̃2

2

15

) 1
4

. (58)

The solution b̃2 = 0 corresponds to the vacuum solution, whereas the positive, real solution
corresponds to the compacton. The remaining coefficients are determined by inserting the
power series expansion (52) and (53) into the system of equations (30) and (49). The leading
order coefficient B̃2 is, in fact, equal to the leading order coefficient B2 of subsection 2.2 (but
for the value b ≡ b1 = 0), because equation (30) is the same in both cases. Therefore, we
obtain

B̃2 = 0,±
√

6λ

12
(59)

and the compacton corresponds to the choice B2 =
√

6λ
12 . For the compacton value for b̃2 we

obtain correspondingly

b̃2 = R

(
e6λ

360

) 1
4

(60)

and the higher coefficients are uniquely determined by linear equations. We find, for instance,

B̃3 =
√

6λ

180R
, B̃4 = −

√
15

324
e3 +

23
√

6

6480

√
λ

R2
− λ

144
(61)

b̃3 = 3

5

(
e6λ

360

) 1
4

(62)

and

b̃4 = − 97

7020
R−1

(
e6λ

360

) 1
4

+
14

117

R

λ

(
e6λ

360

) 3
4

− 2

117

√
6λR

(
e6λ

360

) 1
4

. (63)

The expressions for the higher coefficients are too long to be displayed here. We remark that
due to the boundary conditions imposed there are no free parameters in the expansion at the
boundary. Indeed, all expansion coefficients are determined in terms of the parameters of the
theory, e and λ, and in terms of the compacton radius R.

12
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Figure 5. Non-standard gauge field kinetic term: the values of λ, for some selected values of e,
such that a compacton exists in the e–λ plane.

3.2. Expansion at the center

We insert the power series expansions at the center

f (r) =
∞∑

n=1

Ã2n−1r
2n−1 (64)

α(r) =
∞∑

n=1

ã2nr
2n (65)

into the system of equations (18) and (48), where we set n = 3 in the latter equation.
Analogously to subsection 2.1, only odd powers contribute to f , and only even powers
contribute to α. Here, Ã1 ≡ Ã and ã2 ≡ ã are free parameters, and the higher coefficients can
be expressed by them. They are, in fact, uniquely determined by linear equations. Explicitly,
we find

ã4 = − 1

120

e6Ã4

ã4
(66)

ã6 = 1

5400

e6Ã4(−e6Ã4 + 30ã6)

ã9
+

1

3840

e6Ã2

ã4
λ (67)

Ã3 = − 1

64

λ

Ã
(68)

Ã5 = 1

2880

Ã(−e6Ã4 + 60ã6)

ã4
− 1

768

3ã − 4Ã2

Ã
λ − 5

16 384

λ2

Ã3
. (69)

Again, we do not display higher coefficients.

3.3. Numerical evaluation

Again, there are two possibilities for a numerical integration of our system, namely a shooting
from the center or a shooting from the boundary. In both cases we will find that there exists

13
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Figure 6. Non-standard gauge field kinetic term: the compacton radius R, for some selected values
of e (and for the corresponding, adjusted values of λ, such that the compacton exists).
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Figure 7. Non-standard gauge field kinetic term, and shooting from the boundary: for e = 0.1, and
for the corresponding values λ = 0.001 431 43 and R = 13.19195, the functions f (r) and f ′(r)
are shown. It is clearly seen that f , which starts at f (R) = 1, goes to zero at r = 0, whereas f ′,
which starts at f ′(R) = 0, goes to some nonzero value which is not determined by the asymptotic
analysis.

one condition more than the existing free parameters; therefore a solution will not exist in
the generic case. Instead, a finetuning of the two remaining free coupling constants in the
Lagrangian, e and λ, is necessary. Differently said, we shall promote one of the two coupling
constants to an additional adjustable parameter. Concretely, we will assume that the electrical
charge e is a given, arbitrary coupling constant, whereas λ will be treated as an additional
adjustable parameter.

With this assumption, the number of adjustable parameters and the number of conditions
again match. Indeed, in the case of the shooting from the center the free parameters are
a,A,R and λ, and the conditions are f (r = R) = 1, f ′(r = R) = 0, α(r = R) = 1 and

14
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Figure 8. Non-standard gauge field kinetic term, and shooting from the boundary: for e = 0.1,
and for the corresponding values λ = 0.001 431 43 and R = 13.191 95, the functions α(r) and
α′(r) are shown. It is clearly seen that α, which starts at α(R) = 1, goes to zero at r = 0, and α′,
which starts at α′(R) = 0, goes to zero, as well. Observe that the latter condition does not count as
an independent boundary condition, because it is dictated by the symmetries of the corresponding
differential equation (i.e., α has a power series expansion about r = 0 in terms of r2 rather than r).
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Figure 9. Non-standard gauge field kinetic term, and shooting from the boundary: for e = 1.0,
and for the corresponding values λ = 1.431 44 and R = 2.3459, the functions f (r) and f ′(r) are
shown. It is clearly seen that f , which starts at f (R) = 1, goes to zero at r = 0, whereas f ′,
which starts at f ′(R) = 0, goes to some nonzero value which is not determined by the asymptotic
analysis.

α′(r = R) = 0. In the case of the shooting from the boundary, the free parameters are R and
λ, and the conditions are f (r = 0) = 0 and α(r = 0) = 0. In both cases, the free parameters
match the boundary conditions, so that we expect a solution to exist, where now λ no longer is
an independent coupling constant but, instead, has an adjusted, fixed value for a given choice
of the electric charge e. We remark that, again, the condition α′(r = 0) = 0 does not count
as an additional boundary condition, because it is a consequence of the symmetries of the
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Figure 10. Non-standard gauge field kinetic term, and shooting from the boundary: for e = 1.0,
and for the corresponding values λ = 1.431 44 and R = 2.3459, the functions α(r) and α′(r) are
shown. It is clearly seen that α, which starts at α(R) = 1, goes to zero at r = 0, and α′, which
starts at α′(R) = 0, goes to zero, as well. Observe that the latter condition does not count as an
independent boundary condition, because it is dictated by the symmetries of the corresponding
differential equation (i.e., α has a power series expansion about r = 0 in terms of r2 rather than r).
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Figure 11. Non-standard gauge field kinetic term, and shooting from the boundary: for e = 2.0,
and for the corresponding values λ = 11.4515 and R = 1.394 879, the functions f (r) and f ′(r)
are shown. It is clearly seen that f , which starts at f (R) = 1, goes to zero at r = 0, whereas f ′,
which starts at f ′(R) = 0, goes to some nonzero value which is not determined by the asymptotic
analysis.

equations of motion (that is, α(r) has a power series expansion about r = 0 in terms of r2

rather than r).
In the numerical calculations, the features described above are reproduced with a high

precision. In figure 5, we display the adjusted values of λ, for some selected values of e,
such that a compacton of the type described in section 3 exists. In figure 6, we display the
corresponding values of the compacton radius R, again as a function of e. It is clearly seen
that the compacton radius diverges as e → 0, which is as expected, because there should
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Figure 12. Non-standard gauge field kinetic term, and shooting from the boundary: for e = 2.0,
and for the corresponding values λ = 11.4515 and R = 1.394 879, the functions α(r) and α′(r)
are shown. It is clearly seen that α, which starts at α(R) = 1, goes to zero at r = 0, and α′, which
starts at α′(R) = 0, goes to zero, as well. Observe that the latter condition does not count as an
independent boundary condition, because it is dictated by the symmetries of the corresponding
differential equation (i.e., α has a power series expansion about r = 0 in terms of r2 rather than r).

exist no topological compacton for zero coupling to the gauge field. In figures 7–12 we plot
the functions f (r) and α(r) for some selected values of e. In these figures, the numerical
integration is performed via shooting from the boundary, which is simpler numerically, because
there are less free adjustable parameters and less boundary conditions. In all cases the figures
clearly display the behavior described in subsections 3.1 and 3.2.

For reasons of consistency, we also performed some numerical integrations via shooting
from the center. The resulting solutions f and α are in complete agreement with those obtained
by shooting from the boundary. As said, these calculations are more involved, because
they require the determination of the correct values in a four-parameter space, whereas the
shooting from the boundary only requires the determination of two parameters. Therefore,
we recalculated only some cases via shooting from the center, and we do not display the
corresponding figures.

4. Conclusions

In this paper we investigated a system of a complex scalar field coupled to an Abelian gauge
field via a non-standard covariant kinetic term and established the existence of compact gauge
vortices by a combination of analytical and numerical methods. Here we had to distinguish
two cases. If the kinetic term of the gauge field is of the standard form, then the resulting
compacton solutions are of the weak type, because the first derivative of the gauge field at
the compacton boundary is discontinuous. The resulting compacton field configurations still
give rise to a non-singular energy density and, consequently, to a finite total energy. For a
specific non-standard choice of the gauge field kinetic term, on the other hand, we were able
to establish the existence of compact vortex solutions in the sense of strong solutions, that is,
solutions to the field equations in all space. Consequently, we had to choose the third power
of the standard Maxwell action, which is dictated by the condition of a quadratic approach
to the vacuum, like the scalar Higgs field itself. These solutions, however, do not exist for
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arbitrary values of the coupling constants of the theory but require, instead, a finetuning of
these couplings. The reason for this finetuning is that the existence of the compacton solution
imposes some boundary conditions, and in this case there are more conditions on the fields
than there are free integration constants. This finetuning is, in fact, quite similar to a finetuning
between the cosmological constant and the gravitational constant that was observed in [20]
for a compact brane coupled to gravity in five dimensions. We remark that field theories
with higher powers of the Maxwell action are not as exotic as on might think. They have
been studied, in the non-Abelian case, as effective low energy theories to better describe the
vacuum and confinement of strongly interacting gauge field theories [24, 25]. They have also
been introduced into cosmology where they apparently are more efficient in the creation of
large-scale magnetic fields (see [26]).

Let us emphasize again that the absence of the usual quadratic kinetic term of the Higgs
field, at least in the limit of low energies, is necessary for the exact compacton solutions to
exist. As this is an unusual behavior, one possible interpretation consists in considering these
theories as effective or strong coupling limits of more standard theories in situations where
propagation is not relevant, as is the case, for instance, for static solutions. The important
point here is that the strong coupling limit may be a good approximation for the static solution
(a compacton approximates an ‘almost compacton’ soliton, where the (probably large) size
of the compacton is controlled by the large coupling constants, whereas the tiny region of
very fast exponential decay to the vacuum is controlled by the small coupling constant of
the standard kinetic term), whereas it is a bad approximation for the propagation of small
fluctuations (the propagation in the vacuum is completely supressed in the strong coupling
limit). In any case, the study of the present paper is dedicated to establish the existence of
compact vortex solutions for K-field theories, whereas the questions of physical relevance and
possible applications shall be investigated elsewhere.

We conclude that the concept of compactons, that is, soliton solutions with compact
support, can be extended to higher dimensions. In this paper, we investigated the case of
higher-dimensional topological defects, specifically vortices. For these higher-dimensional
topological defects, we found that finite energy solutions require the introduction of a gauge
field, i.e., the study of a gauge theory. Recently, a rather general study of higher-dimensional
non-topological solitons in K-field theories has been performed in [27], and it was found
that such non-topological solitons may exist in higher dimensions under certain conditions.
Therefore, also the existence of non-topological compactons in pure scalar field theories
(without a gauge field) cannot be excluded, although in these cases the issue of stability will
probably be more problematic. In any case, these questions are beyond the scope of the present
paper.
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